
TSN and Linux

Still today, TSN networks are often developed
with proprietary or special solution-based Li-
nux approaches. The question arises: How far
can TSN networks yet be realized with Main-
line Linux? The basic functionalities such as
time synchronization and traffic scheduling
can already be implemented today. Yet, not all
TSN-related standards have been fully imple-
mented by now.

TSN solutions
Linux in combination with the PREEMPT-RT
Patch [1] or Xenomai [2] is a very popular and
widely used operating system for industrial
devices. Accordingly, TSN is an important use
case for real time Linux. This includes applica-
tions ranging from Audio/Video broadcasting
to industrial control systems utilizing fieldbu-
ses. Traditionally, real time networking on Linux
has been accomplished by bypassing the Linux
kernel network stack completely. Such solutions
include DPDK [3] or vendor specific proprietary
implementations.

All these variants have in common that mo-
difications must be made to the Linux kernel.
This is true for the involved network drivers,
the data and control plane from the applica-
tion to the kernel as well as the configuration
of a TSN network. This leads to the following
problems:

Network interface exclusive for real time,
no co-existence with best effort traffic

No reuse of any standard Linux interfaces
and tools

Requirement of manufacture specific ap-
plications

Increased maintenance effort due to
third party components

This leads to the question whether TSN net-
works can actually be realized with Mainline
Linux? This question will be answered below.

TSN with Mainline Linux
Exactly three components are required for
TSN: Time synchronization, traffic scheduling
and configuration. A common time base of de-
vices and switches provides the foundation for
deterministic network scheduling. Implemen-
ting the requirements of the applications and
synchronizing all components in the network
is part of the configuration.

Time synchronization

All end devices and bridges require the same
understanding of time. The real-time capabi-
lity of the network ensures that each partici-
pant performs the right actions at the right
time. This requires synchronization of the in-
ternal clocks between all participating part-
ners. In TSN networks, this is done via Ether-
net itself using the generalized Precision Time
Protocol (gPTP). This protocol ensures an ac-
curacy in the range below one microsecond.

The Linux kernel offers its own subsystem
[4] for controlling PTP hardware clocks (PHC).
The clocks themselves are displayed as POSIX
clocks. Thus, you can use the standard inter-
faces for reading, setting and controlling the
clocks. The PTP protocol itself is not part of the
kernel, but is implemented in the user space.
The Linux kernel provides hardware access to
the clocks. The Linux PTP stack can be seen in
Figure 1.

The Time Sensitive Networking (TSN) extensions allow real-time capable and deterministic
communication via conventional Ethernet. As operating system for end devices very often Li-
nux is used, which is extended by real-time capability especially in connection with the PRE-
EMPT-RT patch. Therefore, Linux is a popular choice as operating system for those devices and
switches using TSN.

2

One of the most popular Linux User Space PTP
Stacks is linuxptp[5]. Linuxptp implements the
PTP protocol according to both IEEE 1588 and
IEEE 802.1AS-2011 in the role of a terminal sta-

tion. In TSN networks, time synchronization is
performed via 802.1AS. This standard is a sub-
set of 1588 and offers extensions e.g. for syn-
chronization via WiFi. TSN is currently planned
to use the standard IEEE 802.1AS-2020, which
is, at least for the most components, not yet
supported in Mainline Linux.

PTP constantly performs peer delay measu-
rements. Therefore, accurate timestamps for
PTP messages are required. Linux supports
this for MAC as well as PHY timestamping via
the SO_TIMESTAMPING [6] interface.

Traffic scheduling

The determinism and thus the real-time capa-
bility in TSN networks are ensured by various
shapers and schedulers. The available band-
width is controlled and divided among the ap-
plications according to the requirements.

Traditionally, applications under Linux com-
municate with networks via the socket inter-
face. The network stack handles packet hand-
ling, protocol implementations such as TCP/IP,
UDP/IP or Raw Ethernet and hardware control.
The network stack is configured by using sche-
dulers, classes and filters. These mechanisms
have been established and understood for ye-
ars. Since TSN is an extension to Ethernet, the
current Linux implementation is also based
on these components. Accordingly, TSN inte-
grates itself directly into the Linux network
stack. The principle can be seen in Figure 2.

This principle allows both applications with
real-time requirements and existing applica-
tions to coexist on a system without any spe-
cial requirements and use the same interface.
The Linux kernel controls access to the network
hardware and ensures that packets are sent at
the correct time. That is the Time Slot Manage-
ment component. However, the kernel must be
configured correctly. Because the requirements
come from the application. The network stack is
configured using Queuing Disciplines (Qdiscs).

A Qdisc corresponds to a packet scheduler. The
scheduler decides the point of time when a pa-
cket is given to the network hardware or appli-
cation. As part of the TSN implementation, vari-
ous Qdiscs have been developed in recent years
and integrated into the Mainline Linux kernel.

Applications for controlling industrial plants
usually have to send packets in regular cyc-
les and with as little jitter as possible. Mo-
dern network cards offer the possibility that
the hardware itself sends frames at a certain
time. Exactly for this scenario a Qdisc called
Earliest Tx Time [8] was developed. The confi-
guration is done via the traffic control subsys-
tem and its associated user space tool tc. An
example can be seen in Figure 3.

This tc call replaces the current Qdisc of the
eth0 interface with ETF. The timestamps are
specified in reference to the TAI clock. The ap-
plication can specify a timestamp for each
frame via a socket option in the user space
(SO_TXTIME). The offload parameter specifies
that the hardware offloading of the network
card should be used. If that is not available, a
software implementation is used.

Traffic shaping is just as important as mini-
mizing jitter. The TSN standards define se-
veral different mechanisms. Quite common
especially in audio and video streaming envi-
ronments is the limitation of traffic to a fixed
bandwidth. For this purpose, the Linux kernel
since version 4.15 contains the Credit Based
Shaper [9], also implemented as Qdisc. An ex-
ample configuration can be found in Figure 4.

 The configuration parameters are taken from
the 802.Qav standard.

Real-time capability is ensured not only by
bandwidth limitation, but also by time slot

Fig. 1: Linux PTP stack

Linux PTP

© Linutronix GmbH 2019

Fig. 1: Linux PTP stack

Fig. 2: Linux TSN implementation

Linux TSN

© Linutronix GmbH 2019

Fig. 2: Linux TSN implementation

Fig.3: Linux traffic control

Linux Traffic Control (tc)

© Linutronix GmbH 2019

3

management. The TSN standard 802.Qbv de-
fines the Time Aware Shaper for this purpose.
The Linux kernel already contains such an im-
plementation, the so-called TAPRIO [10] Qdisc.
That scheduler allows the subdivision of the
bandwidth into cyclic repeating time slots. The
Ethernet traffic is divided into different classes,
and slots are assigned to them. An example
cycle can be seen in Figure 5.

This cycle contains three time slots for three
different traffic classes, e.g. for automation,
streaming and general purpose applications.
Each traffic class has a slot of 100 or 200 mi-
croseconds. After 400 microseconds, the cycle
is repeated and the next one begins.

This example cycle can be configured for a net-
work interface as follows:

In this configuration the number of traffic clas-
ses is determined first. The assignment of pa-
ckets in the user space to these traffic classes
is done by the map parameter via the 16 socket
priorities. TSN capable hardware usually has se-
veral Tx queues. The traffic classes are assigned
to the queues based on the queues parameter.
The actual cycle and the start time are created
afterwards. The flags can be used to make con-
figurations such as hardware offloading.

Real Time Ethernet Communication
Apart from the time synchronization and traffic
scheduling configuration, Linux has to support
real time Ethernet communication for applica-
tions as well. The Linux network stack has been
optimized for Layer 4 (TCP and UDP over IP) and
throughput. Therefore, it is not well suited for
deterministic and real time communication.

The introduction of the eXpress Data Path (XDP)
[11] technology into the Linux kernel closed
that gap. XDP is a in-kernel fast path which
allows to process Ethernet frames before they
are passed to the regular Linux network stack.
Therefore, XDP makes use of eBPF [12]. This al-
lows the applications to provide user logic in
terms of eBPF programs. These programs deci-
de how incoming Ethernet frames are handled.
A new socket type (AF_XDP) has been intro-
duced. This allows to redirect Ethernet frames
directly into the applications without further
processing in the kernel. The memory manage-
ment is moved from the network stack into the
application which allows more deterministic
handling. Furthermore, XDP sockets provide
the ability to perform zero-copy which decrea-
ses frame processing times.

One significant advantage of XDP in contrast to
traditional kernel bypass mechanisms is that
XDP is well integrated into the kernel. Based
on the decision made by the eBPF programs a
frame can be either treated as real time data
for an application or still moved to the Linux
kernel for further processing. This allows for
co-existence between general purpose and real
time traffic on the same network interface at
the same time

Configuration
Time synchronization and traffic scheduling
form the basis for TSN networks. But how are
the schedules and individual parameters to
be calculated and finally distributed to the
terminal stations and switches? The relevant
requirements come from the applications. The
802.1Qcc standard defines the management
and protocols for TSN configuration. On the
one hand there is the Central Network Cont-
roller (CNC), which determines the commu-
nication paths or cycles and configures the
switches, on the other hand there is the Cen-
tralized User Configuration (CUC), which re-
ceives the requirements from the applications
and passes them on to the CNC. The structure
is shown in Figure 7

In addition to the centralised model, further
approaches such as decentralised or mixed
forms of the two approaches are conceivable.
The protocols used for configuration include
NETCONF, RESTCONF and Yang models.

The configuration is an orthogonal problem
for a Linux system. The CUC and CNC as well
as the necessary programs on the terminal
stations or switches are just software from the
point of view of the Linux kernel. Nevertheless,
there is a requirement for open solutions. Ex-
amples for such open source TSN configurati-
on software include:

Linux CBS

© Linutronix GmbH 2019

Fig.4: Linux CBS

Fig.4: Linux CBS

Linux taprio

© Linutronix GmbH 2019

Fig.6: Linux taprio configuration

TSN time slot management [802.Qbv]

© Linutronix GmbH 2019

Fig.5: TSN time slot managementFig.5: TSN time slot management

• ControlTSN, Research Project
 https://www.accesstsn.com/

• OpenCUC: Prototype OPC/UA PubSub
 https://github.com/openCUC/openCUC

• OpenCNC: Prototype CNC

Conclusion
The basic functions such as time synchroniza-
tion, traffic scheduling as well as determinis-
tic frame transmission and reception are pos-
sible today with a standard Linux system. The
basic infrastructure has been created in the
Linux kernel. This means that basic TSN net-
works can be realized with (mainline) Linux.
Not all TSN standards are supported yet. Table
1 shows the current status and whether the
standard is relevant for Linux at all.

Standard Status Linux
relevant

Linux
support

802.1AS-2011 published yes in parts

802.1AS-2020 published yes in parts

802.1Qav published yes yes

802.1Qbv published yes yes

802.1Qbu published yes in progress

802.1Qbr published yes in progress

802.1Qca published no no

802.1Qcc published no no

802.1Qch published yes no

802.1Qci published yes in parts

802.1QCB published yes in progress

In summary, there is no fundamental prob-
lem that would make it impossible to imple-
ment these standards and the necessary Linux
extensions. Accordingly, it is only a matter of
time before all standards are supported in
(mainline) Linux.

Bibliography and Sources
[1] „PREEMPT_RT Wiki,“ [Online]. Available: https://wiki.li-
nuxfoundation.org/realtime/start. [accessed 07 Sep 2019].
[2] „Xenomai,“ [Online]. Available: https://xenomai.org/.
[accessed 07 Sep 2019].
[3] „Data Plane Development Kit“ [Online]. Available: htt-
ps://www.dpdk.org/. [accessed 07 Sep 2019].
[4] R. Cochran, „PTP (Precision Time Protocol) Documen-
tation,“ [Online]. Available: https://www.kernel.org/doc/
Documentation/ptp/ptp.txt. [accessed 07 Sep 2019].
[5] R. Cochran, „The Linux PTP Project,“ [Online]. Available:
http://linuxptp.sourceforge.net/. [accessed 07 Sep 2019].
[6] P. Ohly, „The Linux Kernel Archives,“ [Online]. Availab- le:
https://www.kernel.org/doc/Documentation/networ- king/
timestamping.txt. [accessed 06 Sep 2019].
[7] T. Gleixner, „Evolution and current status of TSN in
Linux,“ in TSN/A Konferenz, Stuttgart, 2018.
[8] J. Sanchez-Palencia, „ETF (Earliest TxTime First) Docu-
mentation,“ [Online]. Available: http://man7.org/linux/
man-pages/man8/tc-etf.8.html. [accessed 06 Sep 2019].
[9] V. C. Gomes, „CBS (Credit Based Shaper) Dokumen- ta-
tion,“ [Online]. Available: http://man7.org/linux/man- pa-
ges/man8/tc-cbs.8.html. [accessed 07 Sep 2019].
[10] V. C. Gomes, „TAPRIO (Time Aware Priority Shaper) Do-
kumentation,“ [Online]. Available: http://man7.org/linux/
man-pages/man8/tc-taprio.8.html. [accessed 07 Sep 2019].
[11] „AF_XDP,“ [Online]. Available: https://www.kernel.org/
doc/html/latest/networking/af_xdp.html. [accessed 02 Sep
2022].
[12] „BPF Documentation,“ [Online]. Available: https://docs.
kernel.org/bpf/index.html. [accessed 02 Sep 2022].

Are you interested? Would you like to learn
more about our products and solutions?
Simply contact us via telephone or email.

L I N UT RO N I X G M B H
Bahnhofstr. 3 | D-88690 Uhldingen - Mühlhofen
Phone +49 7556 25 999 0 | Fax +49 7556 25 999 99
sales@linutronix.de | www.linutronix.de

20
22

_V
1.

0

Fig.7: TSN configuration

TSN Configuration

© Linutronix GmbH 2019

Table.2: TSN Standards

